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Figure 1: Various resolutions of change quantified with respect to area of augmentation. This information was computed via (1)
image masks used for inpainting, or (2) post-generation methods using MSE based custom metric from cross-attention-based
editing.

Abstract

While text-to-image diffusion models have demonstrated impactful applications1

in art, design, and entertainment, these technologies also facilitate the spread2

of misinformation. Recent efforts have developed AI-generated image detectors3

claiming robustness against various augmentations, but their effectiveness remains4

unclear. Can these systems detect varying degrees of augmentation? Do they exhibit5

biases towards specific scenes or data distributions? To address these questions,6

we introduce SEMI-TRUTHS, featuring 27, 635 real images, 245, 360 masks, and7

850, 226 AI-augmented images featuring varying degrees of targeted and localized8

edits, created using diverse augmentation methods, diffusion models, and data9

distributions. Each augmented image includes detailed metadata for standardized,10

targeted evaluation of detector robustness. Our findings suggest that state-of-the-art11

detectors are sensitive to different degrees of edits, data distributions, and editing12

techniques, providing deeper insights into their functionality.13

1 Introduction14

The rise of text-to-image generative models has democratized automated image creation for both ML15

practitioners and the general public. While existing architectures like Variational Autoencoders [81,16

29] and GANs [4, 96, 27, 32, 35] have produced realistic images for years, diffusion models [15, 66,17

13] have enhanced image quality, diversity, and ease of use, driving their rapid adoption. However,18

this technology is a double-edged sword. Despite its applications in art, design, marketing, and19

entertainment [31, 91], as it becomes increasingly pervasive, it’s critical to identify and understand20

misuse that spreads misinformation [90, 52]. In recent events, AI-generated images have been21
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increasingly used for harmful purposes like spreading misinformation and committing crimes such as22

fraud, defamation, and identity theft [23, 76]. One alarming factor associated with these models is23

their ability to alter small attributes of an original image, we refer to such images as semi-truths. A24

notable example is the spread of false propaganda during the Israel-Palestine conflict [40]. Rather25

than creating images from scratch, individuals often alter specific parts or attributes to evade detection.26

For instance, the “Sleepy Joe” [69] video circulated on Twitter in 2020, where President Joe Biden’s27

face was edited to appear as if he fell asleep during an interview. The implications of such subtle edits28

and their potential to spread misinformation underscore the critical need for automated detection of29

such attacks.30

Dataset Magnitude
of Change

Targeted
Editing

Quality
Check

Data
Collection

Generation Data Dist. Scale

GANs Diffusion #Methods Scene #Real Bench. Real Fake

1 DFDC [6] ✗ ✗ ✗ Generated ✓ ✗ 8 Face 1 488.4k ∼1.7M
2 FaceForensics++ [68] ✗ ✗ ✗ Generated ✓ ✗ 4 Face 1 509.9k ∼1.8M
3 Celeb-DF [93] ✗ ✗ ✓ Generated ✓ ✗ 1 Face 1 225.4k ∼2.1M
4 DeepFakeFace [73] ✗ ✗ ✗ Generated ✗ ✓ 3 Face 1 30k 90k
5 CIFAKE [5] ✗ ✗ ✗ Generated ✗ ✓ 1 General 1 60k 60k
6 DiffusionDB [87] ✗ ✗ ✓ Sourced ✗ ✓ 1 General 0 0 14M
7 MidJourney prompts [80] ✗ ✗ ✗ Sourced ✗ ✓ 1 General 0 0 248k
8 TWIGMA [10] ✗ ✗ ✗ Sourced ✗ ✓ unknown General 0 0 800k
9 GenImage [98] ✗ ✗ ✗ Generated ✓ ✓ 8 General 1 1.33M 1.35M
10 SEMI-TRUTHS ✓ ✓ ✓ Generated ✗ ✓ 8 General 6 27, 635 ∼850k

Table 1: SEMI-TRUTHS vs other AI-generated image datasets. We compare SEMI-TRUTHS with other AI-generated
image datasets across multiple categories: (1) Magnitude of Change: provides metadata on the magnitude of perturbations;
(2) Targeted Editing: performs targeted editing of images; (3) Quality Check: quality assessment of fake images; (4) Data
Collection: data collection strategy, Generated or Sourced from publicly available portals; (5) Generation: generator category
and number of methods used (TWIGMA’s method was unknown since its images were sourced from Twitter); (6) Data
Distribution: scene variation and diversity of real benchmarks; (7) Scale: number of real and fake images.

However, existing datasets for training and evaluating AI-generated image detectors primarily consist31

of fully synthesized images, often limited to human faces [6, 68, 93, 36, 14]. This narrow focus32

fails to capture the diversity of real-world augmentations and does not reveal model biases toward33

different degrees of augmentation. To address this, we introduce SEMI-TRUTHS, which includes34

AI-augmented images with varying levels of perturbation (detailed comparison in Table. 1, enabling35

the evaluation of detectors against more realistic and diverse attacks like the “Sleepy Joe” video [69].36

We categorize the magnitude of change in SEMI-TRUTHS using two criteria: (1) the size of the37

augmented region, and (2) the semantic change achieved. Quantitative metrics are used to quantify the38

degree of semantic change and their efficacy is validated by evaluating their correlations with human39

judgment. Each original and altered image pair is annotated with descriptive features representing40

these changes. Synthetic images in SEMI-TRUTHS are created using diffusion inpainting and prompt-41

based-editing editing [25, 51] for 5 different diffusion algorithms [60, 71, 58, 67]. To avoid data42

distribution bias, the original images are sourced from 6 existing semantic segmentation benchmarks.43

Our approach to curating SEMI-TRUTHS employs a flexible, plug-and-play method for human-44

guidance-free image editing followed by model sensitivity analysis. This ensures reusability and45

applicability to new data distributions, large language models for prompt perturbation, and various46

image synthesis methods.47

Finally, we demonstrate how the knowledge abstractions in SEMI-TRUTHS can be used to identify48

the sensitivities of existing detectors. By stress-testing 6 models, we reveal unique sensitivities to49

different data distributions, diffusion models, and perturbation degrees. Our goal is to offer a resource50

for targeted, interpretable, and standardized evaluation of AI-Generated image detection systems, and51

to provide a customizable evaluation pipeline for the community.52

2 Related Work53

AI Generated Image dataset The field of AI-based image generation and editing has rapidly54

evolved from autoencoders [18] and graphics-based techniques [78] to GANs [97, 55, 2, 46, 7]55

and, more recently, diffusion models [54, 67, 58, 21]. These advancements have heightened ethical56

concerns regarding identity theft and misinformation, [3, 24, 28] necessitating robust datasets for AI-57

generated image detection. While most research has focused on GAN-generated human faces [6, 68,58

93, 36, 14], there is a growing emphasis on diffusion-based techniques for detection of deepfakes [73],59

2



digital forgery [72] and generic AI-generated content [98, 5, 80, 87]. However, existing datasets60

face several limitations that restrict their applicability as a benchmark for developing robust detection61

systems. They often come from a single model [80, 87] or source data distribution [98, 5], lack62

detailed generation and image metadata [10], and provide limited control over degree and quality63

of edits [80, 87, 98, 5, 73, 10, 63]. Furthermore, they do not offer scalable pipelines for integrating64

future image generation and editing techniques and are limited in their analysis of detection methods.65

Recognizing these gaps, we introduce SEMI-TRUTHS that incorporates multiple model variations,66

editing techniques, and source data distributions, provides comprehensive metadata, and offers67

fine-grained control over the quality and degree of edits (Table. 1 summarizes SEMI-TRUTHS’s68

contributions).69

Image editing pipelines With the advent of diffusion models, the field of image editing has70

seen tremendous advancements [30]. Recent developments in image inpainting, both in text-71

conditioned [88, 89, 84, 92] and unconditioned [48] settings, have enabled fine-grained control over72

image editing significantly enhancing precision and quality. While image inpainting requires the73

use of masks, prompt-based image editing [25, 51] performs targeted edits conditioned solely on74

text prompts. Existing frameworks like LANCE [59] and InstructPix2Pix [8] leverage this capability75

to develop automated image editing pipelines. LANCE [59], leveraging large language models76

(LLMs)[79] and image captioning[43], enables human-supervision-free image edits across diverse77

perturbations. Building on this, we extend LANCE [59] to handle a broader range of perturbation78

magnitudes, guided by semantic change definitions [9, 33]. Our approach integrates LlaVA [47] and79

LLAMA [79] models, combining inpainting and prompt-based techniques for precise, contextually80

informed edits.81

Stress Testing Pipelines Stress testing pipelines, crucial in software engineering, remain under-82

utilized in machine learning. While various metrics exist for performance assessment and model83

comparison [64], they often lack the depth to fully capture model robustness and explain failure84

cases adequately. While initiatives like Stress Test NLI [53] focus on generating adversarial examples85

to evaluate models’ inferential capabilities across six tasks, DynaBench [37] and CheckList [65] take86

a different approach by employing human-in-the-loop systems to dynamically benchmark and assess87

the robustness of natural language models in real-world scenarios. Simultaneously, in the vision com-88

munity, Li et al. [44] utilize diffusion models to create ImageNet-E, honing in on assessing classifier89

robustness through object attributes, while Luo et al [49]. explore model sensitivity to user-defined90

text attributes using StyleGAN [2]. Building upon these endeavors, LANCE [59] advances the field91

by extracting insights from failures via a targeted editing algorithm, enabling stress testing across92

diverse attributes. Our work extends this paradigm to AI-generated image detection, presenting a93

versatile pipeline capable of performing image edits with varying magnitudes of perturbations across94

any diffusion model for a given set of image data points, facilitating evaluation and bias discovery in95

detector architectures through a comprehensive range of stress tests.96

3 SEMI-TRUTHS97
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Figure 2: End-to-end pipeline for SEMI-TRUTHS curation and detector stress testing. The SEMI-TRUTHS pipeline sources
data from 6 benchmarks and uses two editing techniques to perturb images. These images undergo quality checks, metric
analysis, and stress testing of detectors across our curated tests.

To precisely evaluate a detector’s ability to distinguish between AI-generated and real images,98

we curate SEMI-TRUTHS, consisting of over 27, 635 real images and 850, 226 fake images. We99

consider several crucial factors: strategies for targeted editing at varying magnitudes of augmentation,100

diversification of scene distributions, generation techniques, perturbation methods, and the quality of101
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generated images. This section outlines the methods used to guide and quantify the magnitudes of102

augmentation, followed by a description of our generation and quality check pipeline. Finally, we103

detail the various aspects of the curated dataset.104

Small Changes:
Do not significantly alter the
overall meaning or context of
the image. This could include
changing the color of a spe-
cific object, adding or remov-
ing a minor detail, adjusting
the composition or perspective
of the image, or slightly adjust-
ing the color distribution of the
image.

Medium Changes:
Slightly alter the viewer’s per-
ception of the image and its
subject. They could involve
minor changes to an object
or its setting, like altering a
background element, moving
an object or person to another
location within the frame, or
changing the emotions of the
people in the frame.

Large Changes:
Involve substantial modifications
to the image that fundamentally
transform its interpretation or
message. It may even appear
surprising or strange to an audi-
ence. This could include alter-
ing, adding or removing major el-
ements of the image background
and making changes to the sub-
ject of the image.

105

Table 2: Semantic Taxonomy Magnitudes of semantic change, used to guide the perturbation of image captions and mask
labels for targeted image generation.

106

3.1 Magnitudes of Augmentation107

The alteration made to an image can be quantified in two ways: (1) the proportion of the image area108

that has been altered (area ratio of change), and (2) the degree to which the semantics of the image109

were altered (semantic change). To control the degree of alteration along these axioms, we start with110

an initial description of the image. This description is obtained by selecting a segmentation mask111

and the corresponding class label for local understanding, or, in the absence of mask information, by112

generating a caption for the image using BLIP [43].113

Introducing Perturbations Motivated by the categorization of semantic and abstract content from114

visual semantics research [9], we create a taxonomy for small, medium, and large semantic changes115

(see Table 2). This taxonomy is used to guide the perturbation of an image caption or mask label116

using LLaVA-Mistral-7B [47] or LLAMA-7B [79].1 As shown in Figure 3, the model is provided117

with a semantic magnitude category, its definition, a caption to perturb, and the image (if using118

LLaVA-Mistral-7b). For prompt-based-editing, a diffusion model edits images based on perturbed119

captions, introducing semantic changes. In inpainting, the mask and perturbed label restrict the120

area of change based on mask size, allowing precise control over alterations in the image area and121

semantics.122

Measuring Surface Area Change While segmentation masks help localize perturbations to an123

image, providing a ratio for measuring Surface Area Change, diffusion model imprecision can124

compromise their accuracy. Dong et al. [16] demonstrate diffusion models can “color outside the125

box” during inpainting. Furthermore, the lack of mask guidance in prompt-based-editing necessitates126

the use of post-editing metrics. Therefore we employ SSIM [86], MSE, and a custom metric1 which127

collectively assess the extent to which the structural components and the number of pixels differ128

between the original and perturbed images. Our custom metric, derived from MSE, uses thresholding129

to remove noisy components followed by connected component analysis to generate masks indicating130

areas of change. Similar to the area ratio computed using the mask and the image, we compute a ratio131

using the generated mask to quantify the surface area of change. Each of these metrics is normalized132

between 0 and 1 and categorized into small, medium, and large changes based on percentiles: the133

bottom 25th percentile for small, the 25th to 75th percentile for medium and anything beyond the134

75th percentile for large.135

Measuring Semantic Change As mentioned previously, the pre-editing semantic change metric is136

defined according to the taxonomy presented in Table 2. However, the stochasticity of large language137

models (LLMs) and diffusion models necessitates the implementation of post-editing metrics that138

provide a quantitative measure of semantic change. We use three different scores: LPIPS [94] and139

DreamSim [19], computed between the original and perturbed images, and Sentence Similarity [75],140

1Additional details provided in the supplementary
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calculated between the original and perturbed captions/mask labels.1. These metrics are normalized141

and categorized like Surface Area Change metrics, indicating small, medium, and large changes.142

3.2 Image Editing Pipeline143
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Figure 3: Image Editing Pipeline. Components of the image perturbation process for SEMI-TRUTHS curation using inpainting
and prompt-based-editing methods.

Our image editing pipeline, delineated in Fig. 2, expands upon the work of LANCE [59] by integrating144

two distinct image editing techniques: (1) inpainting and (2) prompt-based-editing. Additionally, we145

tailor the pipeline for inpainting by leveraging LlaVA-Mistral-7B [47] to generate zero-shot mask146

label perturbations across various augmentation levels (detailed in Sec. 3.1) and diffusion models.1147

Furthermore, the multiple components of this pipeline demand comprehensive quality checks at each148

stage to ensure that the resulting images maintain structural integrity and align with the specified149

directions of change. To this end, we implement two rounds of data pruning within our image editing150

pipeline to eliminate instances of poor-quality text and image generation. Our multi-stage quality151

check pipeline is detailed below.152

Caption Filtering The caption filtering stage initiates the quality check pipeline, ensuring two153

key aspects: (1) accuracy of generated BLIP [43] captions for prompt-based-editing in representing154

relevant image information, and (2) coherence and desirability of image edits produced by perturbed155

captions/labels, ensuring semantic alignment with original content. For the former, CLIPScore [26]156

measures the difference between embeddings of the original image and its generated caption, filtering157

out the lowest 5th percentile values. For the latter, cosine similarity between CLIP [62] text embed-158

dings of the perturbed caption/mask label and the original is calculated, removing values above the159

95th percentile (negligible change) and below the 5th percentile (semantic incoherence).1160

Post Image Edit Quality Check In the second stage of the quality check pipeline, we aim to (1)161

evaluate the overall quality of generated images, ensuring semantic coherence and accurate augmen-162

tation while retaining resemblance to the original, and (2) filter out instances where diffusion models163

fail to incorporate desired edits. Since our images represent augmentations, conventional metrics like164

PSNR and SSIM [86] aren’t applicable as they require a reference image. We use BRISQUE [50], a165

reference-free metric, discarding images with a score over 70 (top 0.3 percentile). Similarly, to ensure166

that the desired edits are accurately reflected in the image, we use CLIP similarity [62] between167

original and perturbed images, ensuring the diffusion model performed edits on the original. We168

also employ CLIP directional similarity [20] to confirm changes in images align with changes in169

captions/labels. Images between the 20th and 80th percentile are considered. 1170

3.3 SEMI-TRUTHS Details171

Data Distribution We collect data from 6 semantic segmentation benchmarks representing various172

data distributions: CityScapes [12] for urban outdoor scenes, SUN RGBD [74] for indoor room scenes,173

CelebA HQ for human faces [34], Human Parsing for full-body portraits [45], and ADE20K [95]174

and OpenImages [41] for diverse themes. This combined real dataset comprises 27, 635 real images175

and 245, 360 masks. Using inpainting and prompt-based-editing techniques across 6 [58, 60, 71, 67]176

diffusion models for inpainting and 3 [60, 67] diffusion models for prompt-based-editing, with177

LlaVA-Mistral-7B [47] and LLAMA-7B [79] for prompt perturbation, we create 367, 862 prompt-178

based-editing datapoints and 1, 087, 865 inpainting datapoints. After post-edit quality checks, and179

filtering out poor-quality generations, we retain 688, 914 inpainting augmented images and 161, 312180

in prompt-based-editing augmented images, totaling 850, 226 images.1181
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Figure 4: SEMI-TRUTHS details and metadata. Metadata used to describe every generated image in SEMI-TRUTHS.
Attributes highlighted in yellow are novel contributions presented in this work.

Metadata SEMI-TRUTHS encompasses extensive metadata accompanying both real and fake image182

pairs and masks, offering insights into every facet of the generation process(see Fig. 4). This metadata183

includes details about the source data distribution, such as the original benchmark from which the184

image was sourced, scene complexity and diversity (defined by the number and variety of scene185

elements), a list of unique entities present in each image, and the ratio of mask-occupied area.186

Additionally, it provides information about the diffusion model, editing technique, and language187

model utilized for each edit, alongside the original and perturbed caption/label. Furthermore, each188

edited image is accompanied by quantitative and qualitative measures of change categorized across189

semantic and surface area-based metrics, as outlined in section 3.1. The metadata also indicates190

whether the change is categorized as diffuse or localized, determined using a custom algorithm191

detailed in the supplementary materials. All of this information is very crucial for testing the192

effectiveness of detectors across various axes as demonstrated in Sec. 4.193

4 Experiments194

Detector Backbone Training Data Distribution Precision(↑) Recall(↑)

Scene GANs Diffusion All Real Fake All Real Fake

1 DINOv2 [57] ViT [17] + ResNet-50 [22] General ✗ ✗ 29.30 37.17 21.43 49.99 99.96 00.01
2 CNNSpot [83] ResNet-50 [22] General ✓ ✗ 30.13 35.27 25.00 49.99 99.99 00.00
3 DIRE [85] ResNet-50 [22] General ✗ ✓ 31.09 37.18 25.00 49.99 99.99 00.00
4 CrossEfficientViT [11] EfficientNet-B0 [77] + ViT [17] Face ✓ ✗ 46.37 34.89 57.85 46.58 62.87 30.28
5 UniversalFakeDetect [56] CLIP [62]-ViT [17] General ✓ ✓ 64.84 58.89 70.79 60.57 34.11 87.03
6 DE-FAKE [70] CLIP [62] General ✓ ✓ 61.65 49.97 73.33 61.88 52.28 71.48

Table 3: Documentation of each AI-generated Image Detection model evaluated with SEMI-TRUTHS. We evaluated six
detectors with diverse backbones and training data distributions. Models performing satisfactorily, highlighted in green, were
selected for further tests.

We conduct extensive experiments with SEMI-TRUTHS to evaluate the effectiveness of AI-generated195

image detectors in distinguishing between real and AI-generated content (see Table. 4). In the sections196

below, we demonstrate how the knowledge abstraction over image augmentations in the dataset can197

be used to identify nuanced biases in various detectors.1 All evaluation are conducted on a 10%198

sample of SEMI-TRUTHS, containing a total of 87,000 images (27,000 real and 60,000 augmented).199

Overall Detector Performance We select a diverse set of open-source AI-generated image detec-200

tors for stress testing. As demonstrated in Table 4, each model has a unique architecture and training201

distribution. As a preliminary step, we assess the overall performance of these detectors evaluated in a202

zero-shot setting using generic quantitative metrics such as Precision, Recall, and F1-Score to identify203

the top-performing models for more detailed analysis. Of 6 models selected for stress-testing, half did204

not demonstrate performance metrics substantial enough to enable further evaluation. These include205

(1) DinoV2, a foundation vision model that was evaluated for zero-shot prediction of AI-generated206

Images, (2) CNNSpot, a ResNet-50 backbone exclusively trained on GAN-generated content, and207

(3) DIRE, a ResNet-50 backbone model which despite being trained on diffusion-generated content208

failed to demonstrate competitive metrics.209
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Figure 5: Detectors are sensitive to semantic aspects of data distribution Variation in the performance of AI-generated
image detectors with respect to different benchmarks

Sensitivity to Data Distribution To gauge potential biases of detectors to different data distribu-210

tions, we evaluate each model with respect to benchmarks present in SEMI-TRUTHS. In Figure 5211

we demonstrate that each detector exhibits significant variation in performance. Notably, CrossEf-212

ficientViT [11], which is trained on GAN-generated images of human faces, exhibits a significant213

drop in performance on human faces sourced from benchmarks ADE20K, CityScapes [12], and214

SUN-RGBD [74] (CrossEfficientViT pre-emptively filters any images that do not contain a human215

face). In contrast, DE-FAKE [70], trained on more general scene images, exhibits the worst perfor-216

mance on CelebA-HQ [42] and HumanParsing [45] due to limited focus on humans and portrait-like217

images in its training distribution. On the other hand, UniversalFakeDetect [56], trained on indoor218

bedroom images as well as other generic scenes, fails to perform well with SUN RGBD and shows a219

remarkable drop in performance on CityScapes.220

Furthermore, we investigate the detectors’ ability to handle highly complex and diverse multi-instance221

scenes. We evaluate performance across varying levels of Scene Diversity (number of unique class222

instances in the images) and Scene Complexity (number of instances in total), categorized into223

small, medium, and large bins.1 We find that UniversalFakeDetect’s [70] performance degrades224

gradually with increasing scene diversity and complexity. In contrast, DE-FAKE [70] remains225

fairly robust across different scene variations. Interestingly, CrossEfficientViT [11] shows improved226

performance with increasing scene complexity and diversity, which can be attributed to human-227

centered benchmarks like CelebA-HQ [42] and HumanParsing [45] segmenting distinct facial features228

and body parts. In this setting, lower Scene Complexity may indicate a partial image of a face. These229

results highlight that detectors are highly sensitive to the semantic attributes of data distributions,230

emphasizing the importance of stress tests to identify and address distributional weaknesses.231
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Figure 6: Performance variation across image augmentation methods and diffusion algorithms SEMI-TRUTHS offers data
generated using various diffusion algorithms and augmentation methods facilitating detector evaluation across these aspects

Evaluation across Editing Techniques and Models SEMI-TRUTHS contains images generated232

using two different augmentation approaches - inpainting and prompt-based-editing - as well as233

five different diffusion algorithms - StableDiffusion v1.4, StableDiffusion v1.5, StableDiffusion234

XL [58], OpenJourney [60], and Kandinsky 2.2 [71]. This diversity in generated content enables235
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Phrase(Original −→ Edited) Counts Recall
Easy cases

1 lower lip −→ nose 70 66.67
2left brow −→ left brow with slight arch 99 50.0
3 car −→ car with shiny chrome accents 59 45.16

Difficult cases

4 lower lip −→ lipstick 190 15.79
5 skin −→ skin with subtle freckles 127 7.14
6 left ear −→ earring 177 6.67

(a) CrossEfficientViT [11]

Phrase(Original −→ Edited) Counts Recall
Easy cases

1 skin −→ leather 74 98.65
2 nose −→ nose ring 138 97.1
3 left ear −→ earring 177 96.61

Difficult cases

4 vegetation −→ tree 225 66.67
5 ego vehicle −→ mercedezbenz 161 65.84
6 vegetation −→ building 150 65.33

(b) UniversalFakeDetector [56]

Phrase(Original −→ Edited) Counts Recall
Easy cases

1 car −→ car with shiny silver paint 57 85.96
2 vegetation −→ tree 225 84.89
3 ego vehicle −→ mercedezbenz 161 81.37

Difficult cases

4 skin −→ skin with subtle freckles 127 62.99
5 nose −→ nose ring 138 58.57
6 skin −→ leather 74 58.11

(c) De-FAKE [70]

Table 4: Directional Semantic Edits for investigating detector biases. Directional Semantic Edits provide insights on which
edits to a certain entity has a higher chance of fooling detectors

investigation of detector sensitivities to different augmentation procedures.2 Figure 7 shows that236

UniversalFakeDetect [56] performs best on images augmented with Kandinsky 2.2 [71] and worst237

on images augmented with StableDiffusion v1.5 [67]. The difference in Recall score is 10%. The238

inverse is true for DE-FAKE [70]. CrossEfficientVit [11] performs best on images augmented239

with StableDiffusion v1.4 and worst with Kandinsky 2.2 [71] with a 12% drop in performance.240

Additionally, we see that CrossEfficientViT [11] and DE-FAKE [70] are more sensitive to inpainted241

images, whereas UniversalFakeDetect [56] performs worst on prompt-based-editing content.242
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Stress Testing Detectors on Various Magnitudes of Change

Figure 7: Performance variation of select detectors across various magnitudes of augmentation DE-FAKE [70] is robust
across the board, Area Ratio captures the sensitivity exhibited in UniversalFakeDetect [56] and CrossEfficientViT [11]

Evaluation across Varying Magnitudes of Augmentation As detailed in Sec. 3.1, each image in243

SEMI-TRUTHS is fitted with an array of descriptive attributes that capture the magnitude of change. In244

Figure 7 we examine the impact of varying levels of perturbations on detector performance, focusing245

on both surface area and semantic changes. Note that CrossEfficientViT [11] performs better on246

smaller values of Area Ratio, where as UniversalFakeDetect [56] performs better on larger changes.247

UniversalFakeDetect’s [56] performance also drops as DreamSim [19] scores increase. Even though248

DE-FAKE [70] is not the best performing model, it appears to be the most robust against various249

magnitudes of change across the board. This evaluation procedure allows us to gauge which detectors250

exhibit some sensitivity to different degrees of augmentation and which don’t.251

Directional Semantic Edits When describing how the semantics of an image change or how the252

story it portrays evolves, many quantitative metrics can be reductive. Transitioning into an embedded253

space to assess similarity often results in significant information loss. To address this issue, we254

introduce “Directional Semantic Edit” which groups generated images from SEMI-TRUTHS by255

original caption/mask label pairs and their perturbed versions. In the evaluation set, certain directional256

semantic edits occurred as frequently as 445 times. Each detector is evaluated on these groups, and257

metrics are sorted by Recall, as shown in Table 4. Each model exhibits distinct performance variations258

based on specific semantic changes. Notably, UniversalFakeDetect [56] performs best on changes to259

facial features but worst on changes to vegetation. Conversely, DE-FAKE [70] excels at detecting260

changes to cars and vegetation but struggles with changes to human faces. CrossEfficientViT [11]261

shows varied performance with changes to human faces, appearing in both its highest and lowest262

ranks, indicating sensitivity to the magnitude of the change. Furthermore, analyzing these edits can263

maximize the potential of these algorithms by informing decisions about the most suitable ensemble264

2Limitations of [25], [51] restrict prompt-based-editing to StableDiffusion v1.4, StableDiffusion v1.5, [67]
OpenJourney [60]
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Correlation Coeff. Change Metrics(↑)
Area Ratio LPIPS Score SSIM

1 Pearson 0.46 0.14 −0.16
2 Kendall-Tau 0.40 0.15 −0.14
3 Spearman 0.50 0.19 −0.17

Table 5: Correlation between quantitative measures of
change and Human Perception Correlation coefficients
computed between human annotated magnitudes of change
and quantitative metrics available in the dataset. Quantitative
metrics not displayed here had coefficients 0.10.
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0.6

0.8
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Relationship between Human Percieved Change and Various Change Metrics

Human Annotated Magnitude of Change

Figure 8: Relationship between quantitative change metrics and
Human Perception of change (small, medium, large) in SEMI-
TRUTHS Each violin plot shows the distribution of metric values
for a change category.

techniques. For example, while UniversalFakeDetect [56] struggles with vegetation-to-tree edits,265

DE-FAKE [70] excels, suggesting a suitable combination for ensemble approaches. This type of266

analysis helps identify which directional edits are most challenging and confounding for these detector267

models, providing deeper insights into their function and limitations.268

Surveying Human Perception of Magnitudes of Change In this work, we leverage several269

algorithms to capture the degree of visual and semantic change achieved during image augmentation.270

However, how do these measures compare to human perception? We aim to build an intuitive271

understanding of which metrics correlate with how a person may perceive the magnitude of change.272

We conduct a user study where annotators classify the difference between pairs of original and273

augmented images into "not much", "some", and "a lot", corresponding to our "small", "medium", and274

"large" change bins.1 We then compute correlation coefficients (Pearson [38], Kendall Tau [61], and275

Spearman [1]) between human scores and quantitative measures in SEMI-TRUTHS. ( see Table.5).276

5 Discussion277

Limitations and Future Work Our in-painting pipeline currently relies on manual semantic278

mask input, limiting usability. To improve, we’ll integrate automatic mask generation methods like279

SAM [39] similar to InstructEdit [82]. Additionally, using LLAMA-7B [79] and LlaVA [47] models280

for zero-shot editing led to many poor-quality outputs, requiring filtering. Future iterations will281

involve fine-tuning these models. We are also aware of potential biases in metrics like LPIPS [94],282

Sentence Similarity [75], and DreamSim [19], which may impact evaluations.283

Ethical Issues While our project aims to generate specific perturbations to improve detectors, it284

could be used to create sophisticated fake images capable of deceiving fake image detectors, poten-285

tially facilitating misinformation and deepfakes. Additionally, despite our efforts at diversification of286

data and models, inherent biases from these modules may persist which can perpetuate or exacerbate287

existing inequalities, resulting in uneven performance across different contexts and types of images.288

6 Conclusion289

To tackle the growing risk of misinformation from AI-generated images, it is crucial that detectors are290

robust against perturbations. Hence, we introduce SEMI-TRUTHS, housing 850, 226 AI-generated291

images with detailed metadata on source data distribution, scene complexity, diversity, editing292

techniques, change magnitudes, directional edits, and both original and perturbed captions. Our293

plug-and-play image editing pipeline enables easy generation of additional augmentations for any294

image, along with a standardized platform for investigating detector robustness through a suite of295

curated tests. Our findings reveal that state-of-the-art detectors are sensitive to different degrees of296

edits, data distributions, and editing techniques, and provide deeper insights into their functionality.297

Moreover, we introduce a semantic taxonomy for defining semantic change and employ a rigorous298

quality check pipeline for ensuring image quality. Through thorough human evaluation, we ensure299

alignment between the magnitude of our edits and human perception.300

In conclusion, we believe the user-friendly design of SEMI-TRUTHS will facilitate ongoing research301

into robustness against future generative models, helping to combat misinformation effectively.302
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